در این چارچوب فعلی، یک سیستم توصیه گر در سیستم دیگری حاوی تعدادی از آیتم های موجود که توصیه می شوند تعبیه شده است. به منظور آغاز روند توصیه، آیتم های موجود بایستی توسط افراد درجه بندی شوند. در بسیاری از سیستم های توصیه گر این درجه بندی به وضوح فراهم می گردد. در برخی از موارد دیگر، این درجه بندی و ارزیابی از فعل و انفعالات سایر کاربران استنباط می شود و رتبه های ضمنی نامیده می شوند.
پس از آن ، هنگامی که سیستم توصیه گر به اندازه کافی رتبه بندی داشته باشد، این روند می تواند شروع شود. برای هر یک از توصیه ها، تعداد N<=I از اشیاء توسط توصیه گر انتخاب شده ، و به کاربر مورد نظر نشان داده می شود. علاوه بر این ، برخی از سیستم های توصیه گر همچنین اشیای محدود شده و برگزیده را جهت نمایش به کاربر در قالب یک لیست مرتب رتبه بندی می کنند. در مرحله بعد، کاربر احتمالا آیتم هایی را که در بالای این لیست ظاهر می گردند وارسی می کند.
در نهایت ، به منظور ارزیابی عملکرد سیستم توصیه گر ، برای هر شیء نشان داده شده به یک کاربر خاص ما باید میزان مطلوبیت و نزدیکی آیتم نشان داده شده را نسبت به ترجیحات کاربر انداره گیری نماییم. علاوه بر این ، در مورد لیست مرتب، ما باید مکان هر آیتم توصیه شده در این لیست را نیز به حساب آورده و تفسیر نماییم. در ادامه ، مرور سریعی بر چگونگی ارزیابی های انجام شده تا به امروز خواهیم داشت.
ملاحظات اولیه
به منظور اندازه گیری میزان نزدیکی پیش بینی ها به ترجیحات واقعی کاربران به طور معمول از یک نمایش عددی استفاده می شود. علاوه بر این ، به دلیل شفافیت بیشتر از علائم یکسانی در ادامه ی بخش جاری استفاده خواهیم کرد. برای این منظور( P(u , i پیش بینی سیستم توصیه گر برای کاربر خاص u و آیتم i و( p(u , i مقدار واقعی ترجیحات کابر تعریف می گردد.
واضح است، تابع( p(u , iهرگز نمی تواند با دقت مطلق آشکار گردد. بنابراین، ارزش این تابع معمولا با استفاده از رتبه بندی های قبلی کاربران تخمین زده می شود. همانطور که در بالا گفته شد این رتبه بندی می تواند به طور صریح یا ضمنی حاصل گردد.
در برخی موارد، هر دو تابع( p(u , i و( P(u , i تنها دو مقدار 1 یا 0 را ارائه می دهند که بدین معنی خواهد بود که آیتم خاص i برای کاربر خاص u به ترتیب مفید یا بی فایده در نظر گرفته شده است. برای این مورد منحصر بفرد، توابع p و P توابع دوتایی نامیده می شوند.
با این حال، ما تلاش خواهیم کرد آنها را بسته به روشی که آنها کمیت رفتار خوب یک سیستم توصیه گر را تعیین می کنند، به یکی از سه دسته طبقه بندی کنیم.
(1) پیش بینی امتیاز. این معیارها بر روی اندازه گیری ظرفیت سیستم توصیه گر برای پیش بینی امتیازی که یک کاربر به یک آیتم خواهد داد قبل از انجام این امتیاز دهی متمرکز شده اند.
(2) پیش بینی رتبه بندی. این معیارها بر روی اندازه گیری ظرفیت سیستم توصیه گر برای پیش بینی رتبه ای که یک کاربر بر روی مجموعه ای از اقلام خواهد داد قبل از انجام این رتبه بندی متمرکز شده اند.
(3) ظرفیت تصمیم گیری موفق (SDMC). این معیارها بر روی اندازه گیری ظرفیت سیستم توصیه گر برای ایجاد یک تصمیم گیری (توصیه) موفق متمرکز شده اند.
جهت این طبقه بندی در ذهن، ما باید MAE ( و معیارهای مربوط به آن) را به طبقه اول، معیارهای رتبه بندی را به طبقه دوم، و دقت ( و معیارهای مرتبط با آن) و معیارهای IR را به طبقه سوم تخصیص دهیم.
اکنون، اگر ما هدف اصلی از سیستم توصیه گر (اعلام شده در ابتدای بخش 1) را ارائه نماییم، مشاهده میکنیم آنچه که طبقه های اول و دوم از معیارها سعی بر اندازه گیری آن دارند را میتوان نوعی از معیارهای بیش از حد دارای جزئیات آن دانست. در واقع، ما نباید مفروضات بیشتری نسبت به آنچه که در واقع لازم دارند، بسازیم. با این حال، هیچ اشاره ای به امتیاز یا رتبه در تعریف هدف یک سیستم توصیه گر وجود ندارد. علاوه بر این، حتی با فرض اینکه توان یک آیتم مفید یک باشد که در اینصورت p(u , i) به اندازه کافی بالا خواهد بود، براستی جای بحث است که ما می توانیم تنها با استفاده از امتیازات کاربران مقدار دقیق تابع p(u , i) را نتیجه بگیریم]41[. در نتیجه، تمایل ما این است که ساخت متریک هایی که فقط هدف واقعی از یک نوع سیستم توصیه گر را اندازه گیری می کنند محدود نماییم که البته بایستی هشیار باشیم که مفروضات ساخته شده باید در سایر سیستم های توصیه گر مناسب از آغاز اندازه گیری قابل تنظیم کردن باشد.
بنابراین، برای حفظ روشی به اندازه کافی عمومی که هر سیستم توصیه گری با هدف بیان شده¬ی قبلی را در بر بگیرد، به خاطر داشته باشیم که این هدف در مبحث شرایط تصمیم گیری سیستم توصیه گر بیان گردید. بنابراین، معیارهای SDMC به عنوان مناسب ترین گزینه برای این کار به نظر می رسد.
با این حال، توجه داشته باشید که هنگامی که ما به یک توصیه مفید در معیار SDMC اشاره می کنیم، به طور کلی در نظر داریم که یک توصیه موفق، توصیه ای است که در آن آیتم توصیه شده مشابه با علایق واقعی کاربر مورد نظر باشد. به عبارت دیگر، اگر توابع ترجیح باینری کاربران را در نظر بگیریم، توصیه های موفق، آنهایی هستند که در مورد آنها داشته باشیم: | p(u , i) – P(u , i) | = 0
در این مرحله، ما می خواهیم دو پیش فرض مهم را که در پشت این باور معروف وجود دارد بیان نماییم:
(1) فرض اول اینکه یک توصیه موفقیت آمیز است اگر و تنها اگر آیتم توصیه شده، مفید واقع گردد. با این حال، یک هدف توصیه نیز راهنمایی به کاربر می باشد. علاوه بر این، اگر توصیه ای نه “مناسب” و نه به اندازه کافی “جذاب” برای هدایت کاربر به آیتم توصیه شده ارائه گردد، تمامی توصیه ها علی رغم سودمندی آیتم غیر قابل استفاده خواهند بود. به عبارت دیگر، مجزای از تصمیم متداول برای اینکه چه چیزی را توصیه کنیم، نیازمندیم که انتخاب کنیم چه وقت و چگونه توصیه کنیم.
(2) فرض دوم اینکه یک آیتم توصیه شده سودمند است اگر و تنها اگر ترجیحات مربوط به آیتم توصیه شده، منطبق بر ترجیحات کابر هدف واقع گردد. هر چند، این امر همیشه صحیح نیست. به عنوان مثال، بسیاری از سیستم های تجارت الکترونیک را در نظر بگیرید که در آن یک آیتم توصیه شده هر زمان که منجر به تحریک برای انجام یک معامله گردد، مفید است. به طور طبیعی، در مورد دومی می تواند هیچ ارتباطی با ترجیحات کاربر نداشته باشد. در واقع، آن می تواند یک ضرورت و نیاز باشد. بنابراین، سودمندی یک آیتم توصیه شده باید تجدید نظر گردیده و مورد تعمیم قرار گیرد.
بخاطر دلایل ذکر شده در بالا مدعی هستیم “مشخصات بیش از حدی” در معیارهای فعلی برای سیستم های توصیه گر وجود دارد. به عنوان یک راه حل، ما یک چارچوب به اندازه کافی عمومی برای تجزیه ی سیستم های توصیه گر با پیروی از سیاستهای تصریح شده فراهم خواهیم کرد، اما به اندازه کافی خاص که نتایج مهمی از آن حاصل گردد. برای این منظور، ما فرض خواهیم کرد تنها هدف سیستم های توصیه گر راهنمایی کاربران به اشیای جالب و مفید می باشد.
با وجود محبوبیت آنها، این طبقه بندی بسیار وابسته به نوع الگوریتم استفاده شده توسط سیستم توصیه گر می باشد و سیستم های توصیه گر مناسبی را ممکن است در نظر نگیرد. در واقع، برک مجبور به گسترش این طبقه بندی با اضافه کردن دو گروه بیشتر گردیده است: گروه جمعیت شناختی و گروه مبتنی بر دانش]22[.
علاوه بر این، این طبقه بندی نیز نیاز به گسترش مجدد در آینده خواهند داشت.
به منظور درک طیف وسیعی از سیستم های توصیه گر در یک طبقه بندی، نخست ما باید بر روی شایع ترین و ضروری ترین ویژگی ها تمرکز نماییم: باز هم، هدف آنها. تمرکز بر روی این هدف، به عنوان اولین بار در بخش 1 مورد توجه قرار گرفت. ممکن است آن را به دو هدف جزئی جداگانه تقسیم نماییم: (الف) راهنمایی، (ب) فیلتر کردن آیتم های مفید و جالب. بخش اول ممکن است اساسا با رفتاری تعاملی، پویا و بسیار موقتی انجام گردد، در حالی که بخش دوم با یک رفتار تا حدودی مخالف انجام گیرد، دائمی تر و دارای تعامل مستقیم کمتر.
این ما را به معرفی یک طبقه بندی جدید که مبتنی بر آن زیر اهدافی است که یک سیستم توصیه گر خاص بیشتر بر روی آن تمرکز دارد، تشویق می کند. در واقع، در بخش بعد خواهیم دید که رایج ترین سیستم های توصیه گر با ترک تقریبا خودکار یکی از این دو زیر هدف بیشتر تمایل به دیگری دارند. به همین دلیل، به عنوان بخش نخست و اصلی، ما تمام سیستم های توصیه گر ممکن را بسته به اینکه در آن کدامیک از اهداف بیشتر مد نظر قرار گرفته باشد به دو دسته¬¬ی تعاملی و غیر تعاملی به ترتیب طبقه بندی می کنیم.
با سلام
با سپاس از مطالب شما در مورد سیستم های توصیه گر
در صورت امکان منابع این مطلب را نیز در اختیار اینجانب قرار دهید.
در بخش اول این مطلب تنها به 5 منبع اشاره شده ات در صورتی که در این مطالب تا مرجع 23 هم وجود دارد. خواهشمندم منابعی در این زمینه بریا انجام و اتمام کار تحقیقی در اختیار اینجانب قرار دهید.
با سپاس