تکنیکهای معنایی یکی از مهمترین مسائل در دنیای اینترنت میباشند. مسائلی از قبیل قابلیت استفاده مجدد، مجتمعسازی منابع، توصیف معنایی دادهها یا سرویسها، مستلزم به کار بردن آنتولوژی[1] در قراردادهای دو جانبه میباشند. همترازسازی آنتولوژی ها [2]به کشف تشابه بین مولفهها و روابط بین آنتولوژیهای گوناگون می پردازد. همترازسازی، عناصر کلیدی را با تعمیم معنایی ایجاد می کند. در OA باید توجه ویژهای به رابط کاربرها [3]و تکنیکهای تجسمسازی و همچنین دخالت های انسانی در این فرآیند، داشته باشیم. از طرفی وب معنایی[4] برای توصیف محیط های مختلف با دامنه معنایی مختلف طراحی شده است برای مثال دامنه اطلاعات حوزه اطلاعاتی یک دانشگاه با یک کارخانه ماشین متفاوت است بنابراین با توجه به اینکه این اطلاعات به طور مجتمع در وب معنایی قرار نگرفته اند، برای توصیف این اطلاعات، آنتولوژی ها نقش اساسی را ایفا می کنند و همچنین با توجه به اینکه آنتولوژی ها خود در دامنه های مختلف و دور از هم (از نظر شباهت) تعریف می شوند، از همترازسازی آنتولوژی ها استفاده می گردد. در این گزارش همترازسازی آنتولوژی ها بررسی می شود. روش چندزبانه، روشی است که برای همترازسازی بین دو یا چند آنتولوژی به زبانهای مختلف مورد استفاده قرار می گیرد. این روش بسیار پرکاربرد در زمینه های تجاری و خرید های الکترونیکی می باشد. برای مثال در خریدهای الکترونیک که از چند آنتولوژی به چند زبان استفاده می شود می توان از این روش در تطبیق بین عبارات این آنتولوژی ها استفاده کرد. روش دومی که بررسی می شود، روش الگوریتم ژنتیک می باشد که شامل پنج مرحله است. الگوریتم ژنتیک، گونه ای الگوریتم تکاملی است که به مرور با بهبود جواب به جواب بهینه نزدیک می شود. هر مساله ای که با الگوریتم ژنتیک حل می شود باید در ابتدا به وسیله کدگذاری مشخص برای آن به تولید عناصر پایه ای(کروموزوم) بپردازد. یک روش ساده همترازسازی بین دو آنتولوژی مستلزم زمان محاسبات (O(n2 است که این زمان مقایسه ترکیبی از جفت گره ها از دو آنتولوژی می باشد. در این بخش الگوریتمی معرفی می شود که کارایی و مقیاس پذیری همترازسازی بین دو آنتولوژی را افزایش داده و زمان محاسبه را به (O(nکاهش می دهد.
تعداد صفحات: 37